How we achieved 13% improvement in maritime travel efficiency using the Isochrone A* algorithm, real-time oceanographic data, and modern full-stack architecture for Smart India Hackathon 2024.
Use the audio player below to listen to this article. You can customize the voice and reading speed with the settings button.
How we achieved 13% improvement in maritime travel efficiency using the Isochrone A algorithm, real-time oceanographic data, and modern full-stack architecture for Smart India Hackathon 2024.*
The shipping industry is the backbone of global trade, carrying over 90% of the world's cargo. Yet, it faces mounting challenges:
When we encountered the Smart India Hackathon 2024 problem statement focusing on optimal ship routing for the Indian Ocean, we saw an opportunity to revolutionize maritime navigation through intelligent algorithms and real-time data integration.
Traditional A* pathfinding works great for static environments, but the ocean is anything but static. Enter the Isochrone A algorithm* - a time-aware pathfinding approach that considers how environmental conditions change over time.
Unlike conventional routing that treats the ocean as a static grid, Isochrone A* creates "time wavefronts" that expand outward from the starting point, considering:
def isochrone_astar(start, goal, start_time):
"""
Isochrone A* implementation for maritime routing
"""
open_set = PriorityQueue()
open_set.put((0, start, start_time))
came_from = {}
g_score = {start: 0}
while not open_set.empty():
current_f, current_pos, current_time = open_set.get()
if current_pos == goal:
return reconstruct_path(came_from, current_pos)
for neighbor in get_neighbors(current_pos):
# Calculate travel time considering environmental conditions
travel_time = calculate_travel_time(
current_pos, neighbor, current_time
)
tentative_g = g_score[current_pos] + travel_time
if neighbor not in g_score or tentative_g < g_score[neighbor]:
came_from[neighbor] = current_pos
g_score[neighbor] = tentative_g
# Time-aware heuristic
f_score = tentative_g + heuristic(
neighbor, goal, current_time + travel_time
)
open_set.put((f_score, neighbor, current_time + travel_time))
return None
Our solution required processing massive amounts of oceanographic data in real-time. Here's how we architected it:
from flask import Flask, request, jsonify
import xarray as xr
import pandas as pd
import geopandas as gpd
app = Flask(__name__)
@app.route('/api/route', methods=['POST'])
def calculate_route():
data = request.json
start_port = data['start']
end_port = data['end']
departure_time = data['departure_time']
# Load real-time oceanographic data
ocean_data = load_grib_data(departure_time)
# Run Isochrone A* algorithm
optimal_route = isochrone_astar(
start_port, end_port, departure_time, ocean_data
)
return jsonify({
'route': optimal_route,
'efficiency_gain': calculate_efficiency(optimal_route),
'estimated_time': calculate_travel_time(optimal_route)
})
We chose Tauri over Electron for our desktop application, getting:
import { invoke } from '@tauri-apps/api/tauri';
import { MapContainer, TileLayer, Polyline } from 'react-leaflet';
function RouteVisualization({ route }) {
return (
<MapContainer center={[20, 77]} zoom={5}>
<TileLayer url="https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png" />
<Polyline
positions={route.coordinates}
pathOptions={{ color: '#3388ff', weight: 3 }}
/>
<EnvironmentalDataOverlay data={route.environmental_data} />
</MapContainer>
);
}
The magic happens when we integrate live oceanographic data:
import xarray as xr
def process_ocean_data(grib_file_path):
"""Process GRIB files containing ocean current and wave data"""
dataset = xr.open_dataset(grib_file_path, engine='cfgrib')
# Extract relevant parameters
ocean_currents = dataset.sel(
parameterId=['UOGRD', 'VOGRD'] # U and V components of ocean current
)
wave_height = dataset.sel(parameterId='HTSGW') # Significant wave height
wind_speed = dataset.sel(parameterId=['UGRD', 'VGRD']) # Wind components
return {
'currents': ocean_currents,
'waves': wave_height,
'wind': wind_speed
}
def predict_conditions(lat, lon, future_time):
"""Predict ocean conditions at specific coordinates and time"""
historical_data = get_historical_data(lat, lon)
# Simple time-series prediction (in production, use more sophisticated models)
trend = calculate_trend(historical_data)
seasonal = calculate_seasonal_component(historical_data, future_time)
predicted_current = trend + seasonal
return predicted_current
Our rigorous testing showed impressive results:
Traditional A*: 8.2 seconds route calculation
Isochrone A*: 12.4 seconds route calculation
Efficiency gained: 13% shorter travel time
Fuel consumption: 15% reduction
Weather adaptation: Real-time updates every 3 hours
Processing GRIB files containing terabytes of oceanographic data required efficient data structures and algorithms.
def optimize_data_loading(grib_path, region_bounds):
"""Load only relevant data for the region of interest"""
with xr.open_dataset(grib_path) as ds:
# Spatial subset to reduce memory usage
regional_data = ds.sel(
latitude=slice(region_bounds['south'], region_bounds['north']),
longitude=slice(region_bounds['west'], region_bounds['east'])
)
return regional_data.load() # Load into memory only what we need
Achieving sub-second response times for route calculations required algorithmic optimizations:
from functools import lru_cache
@lru_cache(maxsize=1000)
def cached_environmental_lookup(lat, lon, timestamp):
"""Cache frequently accessed environmental data"""
return get_environmental_conditions(lat, lon, timestamp)
Maritime navigation requires precise coordinate transformations:
import pyproj
def convert_coordinates(lat, lon, from_crs='EPSG:4326', to_crs='EPSG:3857'):
"""Convert between coordinate reference systems"""
transformer = pyproj.Transformer.from_crs(from_crs, to_crs)
x, y = transformer.transform(lat, lon)
return x, y
Understanding maritime navigation principles was crucial. We learned about:
Real-time oceanographic data can be noisy. We implemented robust filtering:
def filter_anomalous_data(data, threshold=3):
"""Remove outliers using statistical methods"""
z_scores = np.abs(stats.zscore(data))
return data[z_scores < threshold]
Maritime professionals need intuitive interfaces. Our design principles:
We're exploring machine learning models for better weather prediction:
import tensorflow as tf
def build_weather_prediction_model():
model = tf.keras.Sequential([
tf.keras.layers.LSTM(50, return_sequences=True, input_shape=(24, 10)),
tf.keras.layers.LSTM(50, return_sequences=False),
tf.keras.layers.Dense(25),
tf.keras.layers.Dense(1)
])
model.compile(optimizer='adam', loss='mean_squared_error')
return model
Adding environmental impact as a routing parameter:
def calculate_carbon_footprint(route, ship_specs):
"""Calculate CO2 emissions for a given route"""
total_fuel = 0
for segment in route:
distance = calculate_distance(segment)
fuel_consumption = estimate_fuel_consumption(
distance, ship_specs, segment.environmental_conditions
)
total_fuel += fuel_consumption
co2_emissions = total_fuel * FUEL_TO_CO2_RATIO
return co2_emissions
Our Smart India Hackathon 2024 submission demonstrated:
The project showcased how combining classical algorithms with modern technology stack can solve complex, real-world problems.
class OceanGrid:
def __init__(self, bounds, resolution=0.1):
self.bounds = bounds
self.resolution = resolution
self.grid = self._create_grid()
def _create_grid(self):
"""Create a spatial grid for ocean data"""
lats = np.arange(
self.bounds['south'],
self.bounds['north'],
self.resolution
)
lons = np.arange(
self.bounds['west'],
self.bounds['east'],
self.resolution
)
return np.meshgrid(lons, lats)
def get_nearest_cell(self, lat, lon):
"""Find the nearest grid cell for given coordinates"""
lat_idx = int((lat - self.bounds['south']) / self.resolution)
lon_idx = int((lon - self.bounds['west']) / self.resolution)
return lat_idx, lon_idx
class RouteOptimizer:
def __init__(self, ocean_grid, environmental_data):
self.ocean_grid = ocean_grid
self.env_data = environmental_data
def optimize_route(self, start, end, departure_time, ship_characteristics):
"""Main route optimization function"""
# Initialize the pathfinding algorithm
pathfinder = IsochroneAStar(
self.ocean_grid,
self.env_data,
ship_characteristics
)
# Find optimal route
route = pathfinder.find_path(start, end, departure_time)
# Post-process for smooth sailing
optimized_route = self._smooth_route(route)
return {
'waypoints': optimized_route,
'total_time': self._calculate_total_time(optimized_route),
'fuel_consumption': self._estimate_fuel(optimized_route),
'weather_risks': self._assess_risks(optimized_route)
}
Building an AI-powered ship routing system taught us that the intersection of classical algorithms, real-time data, and modern software architecture can create genuinely impactful solutions. The Isochrone A* algorithm proved that sometimes the best innovations come from adapting existing techniques to new domains.
Our 13% efficiency improvement might seem modest, but in an industry where margins are thin and fuel costs are enormous, this translates to millions of dollars in savings across the global shipping fleet.
The journey from hackathon idea to production-ready system reinforced that great software engineering isn't just about code—it's about understanding the problem domain, choosing the right tools, and building with scalability and maintainability in mind.
The ocean may be vast and unpredictable, but with the right algorithms and data, we can navigate it more intelligently than ever before.
Tech Stack: Python, Flask, React, Tauri.js, Pandas, Xarray, GeoPandas
Data Sources: INCOIS, GRIB weather data, Maritime databases
Achievement: Smart India Hackathon 2024 submission
Impact: 13% efficiency improvement, 15% fuel savings